Certificate in Math for Virtual Worlds
-- ViewingNowThe Certificate in Math for Virtual Worlds is a comprehensive course that bridges the gap between mathematical concepts and their applications in creating virtual worlds. This course highlights the importance of mathematics in fields like gaming, virtual reality, and simulation, making it highly relevant in today's digital age.
5,920+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Math Fundamentals for Virtual Worlds: Understanding basic mathematical concepts essential for creating and manipulating virtual worlds, including geometry, algebra, and calculus.
⢠Vector Math: Learning vector addition, subtraction, scaling, and normalization, as well as dot and cross products, and their applications in virtual environments.
⢠Transformations and Matrices: Exploring translations, rotations, and scales, and how matrices can be used to represent these transformations and chain them together for complex manipulations.
⢠Quaternions and Rotations: Delving into the use of quaternions, a compact and efficient representation of 3D rotations, for animating objects and characters in virtual worlds.
⢠Interpolation and Curves: Learning various interpolation techniques, including linear, cubic, and spherical, and how to create smooth curves using different methods, such as Hermite and Bezier.
⢠Collision Detection and Response: Understanding the principles of collision detection and response, including spatial partitioning, bounding volumes, and continuous collision detection.
⢠Physics Engines and Math: Examining the role of math in physics engines, including rigid body dynamics, soft body physics, and fluid dynamics, and their applications in virtual worlds.
⢠Optimization Techniques for Virtual Math: Learning various optimization techniques, including numerical methods, approximation algorithms, and symbolic computation, to improve the performance of mathematical calculations in virtual environments.
ę˛˝ë Ľ 경ëĄ
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë