Certificate in Engineering Mechanics and Dynamics
-- ViewingNowThe Certificate in Engineering Mechanics and Dynamics is a comprehensive course that provides a solid foundation in the principles of mechanics and dynamics, crucial for engineering professionals. This course emphasizes the importance of understanding the behavior of forces, motion, and energy in engineering systems, enabling learners to design, analyze, and optimize these systems effectively.
6,523+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Engineering Statics: Introduction to the principles of equilibrium, forces, and moments, with a focus on concurrent and non-concurrent forces, and their resultant and vector resolution.
⢠Strength of Materials: Study of the properties of materials and their response to external forces, including stress, strain, and deformation, with an emphasis on the behavior of engineering materials under various loading conditions.
⢠Dynamics: Analysis of the motion of objects under the influence of forces, with a focus on kinematics, kinetics, and energy methods, including work, energy, and power.
⢠Vibrations: Study of the oscillations and vibrations of mechanical systems, including free and forced vibrations, damping, and resonance, and their impact on the design and operation of engineering systems.
⢠Mechanics of Machines: Analysis of the mechanical components used in machines, including gears, cams, bearings, and linkages, and their role in the transmission of power and motion.
⢠Machine Design: Principles and practices of machine design, including material selection, stress analysis, and failure prevention, with an emphasis on the design of safe and reliable engineering systems.
⢠Fluid Mechanics: Study of the behavior of fluids, including liquids and gases, and their impact on the design and operation of engineering systems, with a focus on fluid statics and fluid dynamics.
⢠Thermodynamics: Analysis of the principles of energy and its transformation in engineering systems, including the laws of thermodynamics, heat transfer, and energy efficiency.
⢠Engineering Economy: Study of the financial and economic principles relevant to engineering, including cost analysis, depreciation, and investment appraisal, and their impact on the design and operation of engineering systems.
ę˛˝ë Ľ 경ëĄ
ę˛˝ë Ľ ę˛˝ëĄ ěěą ě¤...
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë