Advanced Certificate BioMEMS
-- ViewingNowThe Advanced Certificate BioMEMS course is a comprehensive program designed to equip learners with essential skills in the field of Microelectromechanical Systems (MEMS) and BioMEMS technology. This course is of utmost importance due to the increasing demand for miniaturized devices in healthcare, diagnostics, and biotechnology industries.
5,382+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Advanced BioMEMS Design: This unit will cover the latest methods and techniques for designing advanced BioMEMS systems, with a focus on integration of microfluidic, biochemical, and electronic components.
⢠Microfabrication Techniques for BioMEMS: This unit will delve into the various microfabrication techniques used for BioMEMS, including photolithography, wet and dry etching, and surface micromachining.
⢠Biocompatible Materials for BioMEMS: This unit will explore the properties and applications of biocompatible materials commonly used in BioMEMS, such as silicon, glass, and polymers.
⢠Biochemical Sensing with BioMEMS: This unit will cover the principles and practices of biochemical sensing using BioMEMS, including biosensors, chemical sensors, and lab-on-a-chip devices.
⢠Microfluidics in BioMEMS: This unit will focus on the role of microfluidics in BioMEMS, including the design and optimization of microfluidic channels, pumps, and valves.
⢠BioMEMS Packaging and Assembly: This unit will cover the various packaging and assembly techniques for BioMEMS devices, including wire bonding, flip chip, and surface mount technology.
⢠Applications of BioMEMS in Biomedicine: This unit will explore the various applications of BioMEMS in biomedicine, including drug delivery, diagnostics, and tissue engineering.
⢠Emerging Trends in BioMEMS: This unit will examine the latest trends and developments in BioMEMS, including nanotechnology, 3D printing, and machine learning.
ę˛˝ë Ľ 경ëĄ
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë