Executive Development Programme in Math Education Data Resilience
-- ViewingNowThe Executive Development Programme in Math Education Data Resilience certificate course is a specialized training program designed to equip educators, administrators, and education professionals with the skills to leverage data for improved math education. This course is crucial in today's data-driven world, where informed decisions are made based on statistical analysis.
6 065+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ร propos de ce cours
100% en ligne
Apprenez de n'importe oรน
Certificat partageable
Ajoutez ร votre profil LinkedIn
2 mois pour terminer
ร 2-3 heures par semaine
Commencez ร tout moment
Aucune pรฉriode d'attente
Dรฉtails du cours
โข Data Analysis for Math Education: Understanding the fundamentals of data analysis and its application in math education. Topics include data collection, data cleaning, and data visualization. โข Math Education Data Research Methods: Exploring various research methods and designs commonly used in math education data analysis, including experimental, correlational, and survey research. โข Statistical Modeling for Math Education Data: Learning how to apply statistical models to math education data, including regression analysis, time series analysis, and multivariate analysis. โข Data Resilience in Math Education: Building data resilience in math education through data security, data governance, and data management best practices. โข Data-Driven Decision Making in Math Education: Developing the skills to use data to inform decision making in math education, including goal setting, monitoring progress, and evaluating outcomes. โข Data Ethics in Math Education: Examining the ethical implications of data use in math education, including data privacy, informed consent, and fairness. โข Data Visualization for Math Education: Learning how to create effective data visualizations for math education, including bar charts, line graphs, and scatter plots. โข Machine Learning for Math Education Data: Exploring the application of machine learning techniques to math education data, including clustering, classification, and prediction.
Parcours professionnel
Exigences d'admission
- Comprรฉhension de base de la matiรจre
- Maรฎtrise de la langue anglaise
- Accรจs ร l'ordinateur et ร Internet
- Compรฉtences informatiques de base
- Dรฉvouement pour terminer le cours
Aucune qualification formelle prรฉalable requise. Cours conรงu pour l'accessibilitรฉ.
Statut du cours
Ce cours fournit des connaissances et des compรฉtences pratiques pour le dรฉveloppement professionnel. Il est :
- Non accrรฉditรฉ par un organisme reconnu
- Non rรฉglementรฉ par une institution autorisรฉe
- Complรฉmentaire aux qualifications formelles
Vous recevrez un certificat de rรฉussite en terminant avec succรจs le cours.
Pourquoi les gens nous choisissent pour leur carriรจre
Chargement des avis...
Questions frรฉquemment posรฉes
Frais de cours
- 3-4 heures par semaine
- Livraison anticipรฉe du certificat
- Inscription ouverte - commencez quand vous voulez
- 2-3 heures par semaine
- Livraison rรฉguliรจre du certificat
- Inscription ouverte - commencez quand vous voulez
- Accรจs complet au cours
- Certificat numรฉrique
- Supports de cours
Obtenir des informations sur le cours
Payer en tant qu'entreprise
Demandez une facture pour que votre entreprise paie ce cours.
Payer par FactureObtenir un certificat de carriรจre