Executive Development Programme in Math Education Data Resilience
-- अभी देख रहे हैंThe Executive Development Programme in Math Education Data Resilience certificate course is a specialized training program designed to equip educators, administrators, and education professionals with the skills to leverage data for improved math education. This course is crucial in today's data-driven world, where informed decisions are made based on statistical analysis.
6,065+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
इस पाठ्यक्रम के बारे में
100% ऑनलाइन
कहीं से भी सीखें
साझा करने योग्य प्रमाणपत्र
अपने LinkedIn प्रोफाइल में जोड़ें
पूरा करने में 2 महीने
सप्ताह में 2-3 घंटे
कभी भी शुरू करें
कोई प्रतीक्षा अवधि नहीं
पाठ्यक्रम विवरण
• Data Analysis for Math Education: Understanding the fundamentals of data analysis and its application in math education. Topics include data collection, data cleaning, and data visualization. • Math Education Data Research Methods: Exploring various research methods and designs commonly used in math education data analysis, including experimental, correlational, and survey research. • Statistical Modeling for Math Education Data: Learning how to apply statistical models to math education data, including regression analysis, time series analysis, and multivariate analysis. • Data Resilience in Math Education: Building data resilience in math education through data security, data governance, and data management best practices. • Data-Driven Decision Making in Math Education: Developing the skills to use data to inform decision making in math education, including goal setting, monitoring progress, and evaluating outcomes. • Data Ethics in Math Education: Examining the ethical implications of data use in math education, including data privacy, informed consent, and fairness. • Data Visualization for Math Education: Learning how to create effective data visualizations for math education, including bar charts, line graphs, and scatter plots. • Machine Learning for Math Education Data: Exploring the application of machine learning techniques to math education data, including clustering, classification, and prediction.
करियर पथ
प्रवेश आवश्यकताएं
- विषय की बुनियादी समझ
- अंग्रेजी भाषा में दक्षता
- कंप्यूटर और इंटरनेट पहुंच
- बुनियादी कंप्यूटर कौशल
- पाठ्यक्रम पूरा करने के लिए समर्पण
कोई पूर्व औपचारिक योग्यता आवश्यक नहीं। पाठ्यक्रम पहुंच के लिए डिज़ाइन किया गया है।
पाठ्यक्रम स्थिति
यह पाठ्यक्रम व्यावसायिक विकास के लिए व्यावहारिक ज्ञान और कौशल प्रदान करता है। यह है:
- यह ध्यान दिया जाना चाहिए कि यह पाठ्यक्रम किसी मान्यता प्राप्त पुरस्कार देने वाले निकाय द्वारा मान्यता प्राप्त नहीं है या किसी अधिकृत संस्थान/निकाय द्वारा विनियमित नहीं है।
- किसी अधिकृत संस्था द्वारा विनियमित नहीं
- औपचारिक योग्यताओं के लिए पूरक
पाठ्यक्रम को सफलतापूर्वक पूरा करने पर आपको पूर्णता का प्रमाणपत्र मिलेगा।
लोग अपने करियर के लिए हमें क्यों चुनते हैं
समीक्षाएं लोड हो रही हैं...
अक्सर पूछे जाने वाले प्रश्न
कोर्स शुल्क
- सप्ताह में 3-4 घंटे
- जल्दी प्रमाणपत्र वितरण
- खुला नामांकन - कभी भी शुरू करें
- सप्ताह में 2-3 घंटे
- नियमित प्रमाणपत्र वितरण
- खुला नामांकन - कभी भी शुरू करें
- पूर्ण कोर्स पहुंच
- डिजिटल प्रमाणपत्र
- कोर्स सामग्री
पाठ्यक्रम की जानकारी प्राप्त करें
कंपनी के रूप में भुगतान करें
इस पाठ्यक्रम के लिए भुगतान करने के लिए अपनी कंपनी के लिए चालान का अनुरोध करें।
चालान द्वारा भुगतान करेंकरियर प्रमाणपत्र अर्जित करें